Fundamental Constants

Atomic Mass Unit	u	$\begin{aligned} & 1.6605402(10) \times 10^{-27} \mathrm{~kg} \\ & 931.43432(28) \mathrm{MeV} / \mathrm{c}^{2} \end{aligned}$
Avogadro's number	$N_{\text {A }}$	$\begin{aligned} & 6.0221367(36) \times \\ & 10^{23}\left(\mathrm{~g} \mathrm{~mol}^{-1}\right. \end{aligned}$
Bohr magneton	μ_{B}	$9.2740154(31) \times 10^{-24} \mathrm{~J} / \mathrm{T}$
Bohr radius	a_{0}	$0.529177249(24) \times 10^{-10} \mathrm{~m}$
Boltzmann's constant	k	$1.380658(12) \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Compton wavelength	λ_{C}	$2.42631058(22) \times 10^{-12} \mathrm{~m}$
Deuteron mass	$m_{\text {d }}$	$\begin{aligned} & 3.3435860(20) \times 10^{-27} \mathrm{~kg} \\ & 2.013553214(24) \mathrm{u} \end{aligned}$
Electron mass	$m_{\text {e }}$	$\begin{aligned} & 9.1093897(54) \times 10^{-31} \mathrm{~kg} \\ & 5.48579903(13) \times 10^{-4} \mathrm{u} \\ & 0.51099906(15) \mathrm{MeV} / \mathrm{c}^{2} \end{aligned}$
Electron-volt	eV	$1.60217733(49) \times 10^{-19} \mathrm{~J}$
Elementary charge	e	$1.60217733(49) \times 10^{-19} \mathrm{C}$
Gas constant	R	$8.314510(70) \mathrm{J} / \mathrm{K} \cdot \mathrm{mol}$
Gravitational constant	G	$6.67259(85) \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Hydrogen ground state	E_{0}	13.605 698(40) eV
Josephson frequency-voltage ratio	$\frac{2 e}{h}$	$4.8359767(14) \times 10^{14} \mathrm{~Hz} / \mathrm{V}$

Magnetic flux quantum	Φ_{0}	$2.06783461(61) \times 10^{-15} \mathrm{~Wb}$
Neutron mass	m_{n}	$1.6479286(10) \times 10^{-27} \mathrm{~kg}$ $1.008664904(14) \mathrm{u}$
		$939.56563(28) \mathrm{MeV} / \mathrm{c}^{2}$ $5.0507866(17) \times 10^{-27} \mathrm{~J} / \mathrm{T}$
Nuclear magneton	μ_{n}	
Permeability of free space	μ_{0}	$4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2}(\mathrm{exact})$

Commonly Used Formulas with Description

Electric Fields

1. $F=k \frac{\left|q_{1}\right|\left|q_{2}\right|}{r^{2}}$, electric force between two charges

Where
$k \cong 9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$, Coulomb constant
Or
$k=\frac{1}{4 \pi \epsilon_{0}}$
2. $\vec{E} \equiv \frac{\vec{F}}{q_{0}}$, electric field vector

Or
$\vec{E}=k \frac{q}{r^{2}} \hat{r}$
3. $\vec{E}=k \sum_{i} \frac{q i}{r_{i}^{2}} \widehat{r}_{i}$, superposition of electric fields
4. $\vec{E}=k_{\Delta q i \rightarrow 0}^{\lim } \sum_{i} \frac{\Delta q i}{r_{i}^{2}} \widehat{r}_{i}=k \int \frac{d q}{r^{2}} \hat{r}$, total electric field at a point in space due to an element of charge

Gauss' Law

5. $\Phi=E A=\int_{\text {Surface }} \vec{E} \cdot d \vec{A}$, electric flux
6. $\Phi_{c}=\oint \vec{E} \cdot d \vec{A}=\oint E_{n} d A$, net electric flux through a closed surface
7. $\Phi_{c}=\oint \vec{E} \cdot d \vec{A}=\frac{q_{i n}}{\epsilon_{0}}$, Gauss' Law

Where
$\mathrm{q}_{\mathrm{in}}=$ the charge inside the Gaussian surface
8. The following are simplified calculations from applying Gauss' Law
a. Insulating sphere of radius R

$$
\begin{aligned}
& \vec{E}=k \frac{Q}{r^{2}} \text { at } r>R \\
& \vec{E}=k \frac{Q}{R^{3}} r \text { at } r<R
\end{aligned}
$$

b. Thin spherical shell of radius R

$$
\begin{aligned}
& \vec{E}=k \frac{Q}{r^{2}} \text { at } r>R \\
& \vec{E}=o \text { at } r<R
\end{aligned}
$$

c. Line charge of infinite length and charge per unit length λ

$$
\vec{E}=2 k \frac{\lambda}{r} \text {, outside the line charge }
$$

d. Nonconducting, infinite charged plane with charge per unit area σ
$\vec{E}=\frac{\sigma}{2 \epsilon_{0}}$, everywhere outside the plane
e. Conductor of surface charge per unit area σ $\vec{E}=\frac{\sigma}{\epsilon_{0}}$, just outside the conductor
$\vec{E}=0$, inside the conductor

Electric Potential

9. $\Delta U=-q_{0} \int_{A}^{B} \vec{E} \cdot d s$, change in potential energy
10. $\Delta V=\frac{\Delta U}{q_{0}}=-\int_{A}^{B} \vec{E} \cdot d s$, potential difference

Where

$$
1 V=1^{J} / C
$$

11. $\Delta V=-E d$, potential difference between two points in a uniform electric field \vec{E}

Where
d is the displacement in the direction parallel to \vec{E}
12. $V=k \frac{q}{r}$, potential due to a point charge q

Where
r is the distance from the charge
13. $U=k \frac{q_{1} q_{2}}{r_{12}}$, potential energy of a pair of point charges separated by distance r_{12}
14. $V=K \int \frac{d q}{r}$, electric potential for a continuous charge distribution
15.
a. $E_{x}=\frac{-d V}{d x}, \mathrm{x}$ component of an electric field potential in a 3 dimensional system
b. $E y=\frac{-d V}{d y}, \mathrm{y}$ component
c. $E z=\frac{-d V}{d z}$, z component
16. The following are simplified electric potential calculations for various charge distributions.
a. Uniformly charged ring of radius a
$V=k \frac{Q}{\sqrt{x^{2}+a^{2}}}$, Along the axis of the ring, a distance x from its center.
b. Uniformly charged disk of radius a

$$
V=2 \pi k \sigma\left[\sqrt{x^{2}+a^{2}}-x\right] \text {, along the axis of the disk, a distance }
$$ x from its center

c. Uniformly charged, insulating solid sphere of radius R and total charge Q

$$
\begin{aligned}
& V=k \frac{Q}{r}, \text { at } r \geq R \\
& V=\frac{k Q}{2 R}\left(3-\frac{r^{2}}{R^{2}}\right), \text { at } r<R
\end{aligned}
$$

d. Isolated conducting sphere of total charge Q and radius R

$$
\begin{aligned}
& V=k \frac{Q}{R}, \text { at } r \leq R \\
& V=k \frac{Q}{r}, \text { at } r>R
\end{aligned}
$$

Magnetic Fields

17. $\vec{F}=q \vec{v} \times \vec{B}$, magnetic force that acts on a charge q moving with a velocity, v
18. $F=q v B \sin \theta$, magnitude of the magnetic force Where
θ is the angle between \vec{v} and \vec{B}
and

$$
[B]=T=\frac{W b}{m^{2}}=\frac{N}{A \cdot m}
$$

19. $\vec{F}=I \vec{l} \times \vec{B}$, The force on a conductor of length l carrying a current I while placed in a uniform external magnetic field \vec{B}
20. $d \vec{F}=I d \vec{s} \times \vec{B}$, force on a very small segment ds
21. $\mu=I \vec{A}$, magnetic moment of a current loop

Where,
A is perpendicular to the plane of the loop and $|\mathrm{A}|$ is equal to the area of the loop
22. $\tau=\mu \times \vec{B}$, torque on a current loop placed in a uniform external magnetic field.
23. $r=\frac{m v}{q B}$, the radius r of the circular path a charged particle moves in a perpendicular plan to the magnetic field.

Where,
m is the mass of the particle
24. $\omega=\frac{q B}{m}$, cyclotron frequency
25. $\vec{F}=q \vec{E}+q \vec{v} \times \vec{B}$, Lorente Force

Magnetic Field Source

26. $d \vec{B}=k_{m} \frac{I d \vec{s} \times \hat{r}}{r^{2}}$, Biot-Savart law

Where,

$$
k m=10^{-7} \frac{W b}{A \cdot m}
$$

27. $B=\frac{\mu_{0} I}{2 \pi a}$, Magnetic field of an infinite long wire where the field lines are concentric with the wire.
28. $\frac{F}{l}=\frac{\mu_{0112}}{2 \pi a}$, Force per unit length between two wires.
29. $\oint \vec{B} \cdot d \vec{s}=\mu_{0} I$, Ampère's Law
30. $B=\frac{\mu_{0} N I}{2 \pi r}$, Magnetic field inside a toroid Where,
$\mathrm{N}=$ number of turns
31. $\quad B=\mu_{0} \frac{N}{l} I=\mu_{0} n I$, Magnetic field inside a solenoid
32. $\Phi_{m} \equiv \int \vec{B} \cdot d \vec{A}$, Magnetic flux
33. $\oint \vec{B} \cdot d \vec{s}=\mu_{0} I+\mu_{0} I_{d}$, Generalized format of Ampère's Law Where,

$$
I_{d} \equiv \epsilon_{0} \frac{d \Phi_{e}}{d t} \text {, Displacement current }
$$

Electromagnetic Waves

34. $\frac{\partial^{2} E}{\partial x^{2}}=\mu_{0} \in_{0} \frac{\partial^{2} E}{\partial t^{2}}$, property of electric field, wave equation
35. $\frac{\partial^{2} B}{\partial x^{2}}=\mu \epsilon_{0} \frac{\partial^{2} B}{\partial t^{2}}$, Property of magnetic field, wave equation
36. $C=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$, The speed of electromagnetic waves in a vacuum
37. $\frac{E}{B}=C$, The instantaneous magnitudes of $|\vec{E}|$ and $|\vec{B}|$ in an electromagnetic wave are related by this expression.
38. $\vec{S} \equiv \frac{1}{\mu_{0}} \vec{E} \times \vec{B}$, Poynting vector, the rate of flow of energy, in electromagnetic waves, crossing a unit area.
39. $P=\frac{S}{c}$, Pressure exerted by electromagnetic on incident surface under complete absorption.
40. $E=E_{m} \cos (k x-\omega t)$, electric field of a sinusoidal plane wave propagating in the positive direction along x axis.
41. $B=B_{m} \cos (k x-\omega t)$, magnetic field of a sinusoidal plane wave propagating in the positive direction along x axis.

Since $\omega=2 \omega \mathrm{f}$ and $\mathrm{k}=2 \pi / \lambda$, we find that
42. $\frac{\omega}{k}=\lambda f=c$
43. $S_{a v}=\frac{E_{m} B_{m}}{2 \mu_{0}}=\frac{E_{m}{ }^{2}}{2 \mu_{0} C}=\frac{C}{2 \mu_{0}} B_{m}{ }^{2}$, The average value of a Poynting vector for a plane electromagnetic wave.

Superconductivity

44. $\quad B_{c}(T)=B_{c}(0)\left[1-\left(\frac{T}{T_{c}}\right)^{2}\right]$, Critical magnetic field as a function of temperature, T , for type I superconductor (sc).

Where,

$$
\mathrm{T}_{\mathrm{c}}=\text { Critical Temperature of a given sc }
$$

45. $\vec{M}=\frac{-\vec{B}}{\mu_{0}}=x \vec{B}$, magnetization of an SC exposed to magnetic field, \vec{B}

Where,

$$
x=-1 / \mu_{0}, \text { magnetic susceptibility }
$$

46. $E_{g}=3.53 k T_{c}$, Energy gap of an SC representing the energy required to break up one Cooper pair which is proportional to the critical temperature at $\mathrm{T}=0 \mathrm{~K}$

Courtesy of Serway, Physics for Scientists and Engineers

