Fundamental Constants

Atomic Mass Unit	u	1.660 540 2(10) × 10^{-27} kg 931.434 32(28) ^{MeV} / _{c²}
Avogadro's number	$N_{ m A}$	$6.022\ 136\ 7(36) \times 10^{23} (g\ mol)^{-1}$
Bohr magneton	μ_B	9.274 015 4(31) \times 10 ⁻²⁴ J/T
Bohr radius	a_0	$0.529\ 177\ 249(24) \times 10^{-10} m$
Boltzmann's constant	k	1.380 658(12) × 10 ⁻²³ J/K
Compton wavelength	λ_{C}	$2.426\ 310\ 58(22)\times 10^{-12}m$
Deuteron mass	m _d	3.343 586 0(20) × 10 ⁻²⁷ kg 2.013 553 214(24) u
Electron mass	<i>m</i> e	9.109 389 7(54) × 10^{-31} kg 5.485 799 03(13) × 10^{-4} u
Electron-volt	eV	$\begin{array}{l} 0.510 \ 999 \ 06(15) \ \mathrm{MeV}/c^2 \\ 1.602 \ 177 \ 33(49) \times 10^{-19} \mathrm{J} \end{array}$
Elementary charge	е	$1.602\ 177\ 33(49) \times 10^{-19} C$
Gas constant	R	8.314 510(70) J/K · mol
Gravitational constant	G	$6.672\;59(85)\times10^{-11}N{\cdot}m^2/kg^2$
Hydrogen ground state	E_0	13.605 698(40) eV
Josephson frequency-voltage ratio	$\frac{2e}{h}$	$4.835\ 976\ 7(14)\times 10^{14}\ Hz/V$

Φ_0	$2.067\ 834\ 61(61) \times 10^{-15}\ Wb$
m _n	$1.647 928 6(10) \times 10^{-27} \text{kg}$ 1.008 664 904(14) u
$\mu_{ m n}$	$939.565\ 63(28)\ \text{MeV}/c^2$ 5.050 786 6(17) × 10 ⁻²⁷ J/T
μ_0	$4\pi \times 10^{-7} \text{ N/A}^2$ (exact)
ε ₀	8.854 187 817 × 10 ⁻¹² C ² /N·m ² (exact)
h ħ	$\begin{array}{l} 6.626\ 075(40)\times 10^{\text{-}34}\ \text{J}{\cdot}\text{s} \\ 1.054\ 572\ 66(63)\times 10^{\text{-}34}\text{J}{\cdot}\text{s} \end{array}$
$m_{ m p}$	$1.672\ 623(10) \times 10^{-27}$ kg $1.007\ 276\ 470(12)$ u
h/e^2	$938.272 3(28) \text{ MeV}/c^2$ 25812.805 6(12) Ω
$R_{ m H}$	$1.097\ 373\ 153\ 4(13) \times 10^7\ m^{-1}$
С	2.997 924 58 × 10 ⁸ m/s (exact)
	$Φ_0$ m_n $μ_n$ $μ_0$ $ε_0$ h \hbar m_p h/e^2 R_H c

Electric Fields

1.
$$F = k \frac{|q_1||q_2|}{r^2}$$
, electric force between two charges

Where

$$k \cong 9.0 \times 10^9 \, N \cdot m^2 / C^2$$
, Coulomb constant

Or

$$k = \frac{1}{4\pi\epsilon_0}$$

2.
$$\vec{E} \equiv \frac{\vec{F}}{q_0}$$
, electric field vector
Or
 $\vec{E} = k \frac{q}{r^2} \hat{r}$

- 3. $\vec{E} = k \sum_{i} \frac{q_i}{r_i^2} \hat{r}_i$, superposition of electric fields
- 4. $\vec{E} = k_{\Delta qi \to 0}^{lim} \sum_{i} \frac{\Delta qi}{r_i^2} \hat{r}_i = k \int \frac{dq}{r^2} \hat{r}$, total electric field at a point in space due to an element of charge

Gauss' Law

5.
$$\Phi = EA = \int_{Surface} \vec{E} \cdot d\vec{A}$$
, electric flux

6. $\Phi_c = \oint \vec{E} \cdot d\vec{A} = \oint E_n dA$, net electric flux through a closed surface

7.
$$\Phi_c = \oint \vec{E} \cdot d\vec{A} = \frac{q_{in}}{\epsilon_0}$$
, Gauss' Law

Where

 q_{in} = the charge inside the Gaussian surface

- 8. The following are simplified calculations from applying Gauss' Law
 - a. Insulating sphere of radius R

$$\vec{E} = k \frac{Q}{r^2} \text{ at } r > R$$
$$\vec{E} = k \frac{Q}{R^3} r \text{ at } r < R$$

b. Thin spherical shell of radius R

$$\vec{E} = k \frac{Q}{r^2} \text{ at } r > R$$
$$\vec{E} = 0 \text{ at } r < R$$

c. Line charge of infinite length and charge per unit length $\boldsymbol{\lambda}$

$$\vec{E} = 2k \frac{\lambda}{r}$$
, outside the line charge

d. Nonconducting, infinite charged plane with charge per unit area σ

$$\vec{E} = \frac{\sigma}{2\epsilon_0}$$
, everywhere outside the plane

e. Conductor of surface charge per unit area $\boldsymbol{\sigma}$

$$\vec{E} = \frac{\sigma}{\epsilon_0}$$
, just outside the conductor

$$\vec{E} = 0$$
, inside the conductor

Electric Potential

9.
$$\Delta U = -q_0 \int_A^B \vec{E} \cdot ds$$
, change in potential energy

10.
$$\Delta V = \frac{\Delta U}{q_0} = -\int_A^B \vec{E} \cdot ds$$
, potential difference

Where

$$1V = 1^{J}/_{C}$$

11. $\Delta V = -Ed$, potential difference between two points in a uniform electric field \vec{E}

Where

d is the displacement in the direction parallel to \vec{E}

12. $V = k \frac{q}{r}$, potential due to a point charge q

Where

r is the distance from the charge

- 13. $U = k \frac{q_1 q_2}{r_{12}}$, potential energy of a pair of point charges separated by distance r_{12}
- 14. $V = K \int \frac{dq}{r}$, electric potential for a continuous charge distribution

15.

a. $E_x = \frac{-dV}{dx}$, x component of an electric field potential in a 3 dimensional system

b.
$$Ey = \frac{-dV}{dy}$$
, y component

c.
$$Ez = \frac{-dV}{dz}$$
, z component

- 16. The following are simplified electric potential calculations for various charge distributions.
 - a. Uniformly charged ring of radius a

 $V = k \frac{Q}{\sqrt{x^2 + a^2}}$, Along the axis of the ring, a distance x from its center.

b. Uniformly charged disk of radius a

 $V = 2\pi k\sigma [\sqrt{x^2 + a^2} - x]$, along the axis of the disk, a distance x from its center

c. Uniformly charged, insulating solid sphere of radius R and total charge Q

$$V = k \frac{Q}{r}, at r \ge R$$
$$V = \frac{kQ}{2R} \left(3 - \frac{r^2}{R^2}\right), at r < R$$

d. Isolated conducting sphere of total charge Q and radius R

$$V = k \frac{Q}{R}, at r \le R$$
$$V = k \frac{Q}{r}, at r > R$$

Magnetic Fields

17. $\vec{F} = q\vec{v} \times \vec{B}$, magnetic force that acts on a charge q moving with a velocity, v

18. $F = qvBsin\theta$, magnitude of the magnetic force

Where

 θ is the angle between \vec{v} and \vec{B}

and

$$[B] = T = \frac{Wb}{m^2} = \frac{N}{A \cdot m}$$

- 19. $\vec{F} = I\vec{l} \times \vec{B}$, The force on a conductor of length *l* carrying a current I while placed in a uniform external magnetic field \vec{B}
- 20. $d\vec{F} = I \, d\vec{s} \times \vec{B}$, force on a very small segment ds
- 21. $\mu = I\vec{A}$, magnetic moment of a current loop

Where,

A is perpendicular to the plane of the loop and |A| is equal to the area of the loop

- 22. $\tau = \mu \times \vec{B}$, torque on a current loop placed in a uniform external magnetic field.
- 23. $r = \frac{mv}{qB}$, the radius r of the circular path a charged particle moves in a perpendicular plan to the magnetic field.

Where,

m is the mass of the particle

24.
$$\omega = \frac{qB}{m}$$
, cyclotron frequency

25.
$$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$$
, Lorente Force

Magnetic Field Source

26.
$$d\vec{B} = k_m \frac{ld\vec{s} \times \hat{r}}{r^2}$$
, Biot-Savart law

Where,

$$km = 10^{-7} \frac{Wb}{A \cdot m}$$

27. $B = \frac{\mu_0 I}{2\pi a}$, Magnetic field of an infinite long wire where the field lines are concentric with the wire.

28.
$$\frac{F}{l} = \frac{\mu_{0I1I2}}{2\pi a}$$
, Force per unit length between two wires.

29.
$$\oint \vec{B} \cdot d\vec{s} = \mu_0 I$$
, Ampère's Law

30.
$$B = \frac{\mu_0 NI}{2\pi r}$$
, Magnetic field inside a toroid Where,

N= number of turns

31.
$$B = \mu_0 \frac{N}{l}I = \mu_0 nI$$
, Magnetic field inside a solenoid

32.
$$\Phi_m \equiv \int \vec{B} \cdot d\vec{A}$$
, Magnetic flux

33. $\oint \vec{B} \cdot d\vec{s} = \mu_0 I + \mu_0 I_d$, Generalized format of Ampère's Law Where,

$$I_d \equiv \epsilon_0 \frac{d\Phi_e}{dt}$$
, Displacement current

Electromagnetic Waves

34.
$$\frac{\partial^2 E}{\partial x^2} = \mu_0 \in_0 \frac{\partial^2 E}{\partial t^2}$$
, property of electric field, wave equation

35.
$$\frac{\partial^2 B}{\partial x^2} = \mu \in_0 \frac{\partial^2 B}{\partial t^2}$$
, Property of magnetic field, wave equation

36.
$$C = \frac{1}{\sqrt{\mu_0 \epsilon_0}} = 3.00 \times 10^8 \, m/_S$$
, The speed of electromagnetic waves in a vacuum

37.
$$\frac{E}{B} = C$$
, The instantaneous magnitudes of $|\vec{E}|$ and $|\vec{B}|$ in an electromagnetic wave are related by this expression.

38.
$$\vec{S} \equiv \frac{1}{\mu_0} \vec{E} \times \vec{B}$$
, Poynting vector, the rate of flow of energy, in electromagnetic waves, crossing a unit area.

39.
$$P = \frac{s}{c}$$
, Pressure exerted by electromagnetic on incident surface under complete absorption.

- 40. $E = E_m \cos(kx \omega t)$, electric field of a sinusoidal plane wave propagating in the positive direction along x axis.
- 41. $B = B_m \cos(kx \omega t)$, magnetic field of a sinusoidal plane wave propagating in the positive direction along x axis.

Since $\omega = 2\omega f$ and $k = 2\pi/\lambda$, we find that

42.
$$\frac{\omega}{k} = \lambda f = c$$

43. $S_{av} = \frac{E_m B_m}{2\mu_0} = \frac{E_m^2}{2\mu_0 C} = \frac{C}{2\mu_0} B_m^2$, The average value of a Poynting vector for a plane electromagnetic wave.

Superconductivity

44.
$$B_c(T) = B_c(0)[1 - \left(\frac{T}{T_c}\right)^2]$$
, Critical magnetic field as a function of temperature, T, for type I superconductor (sc).

Where,

 T_c = Critical Temperature of a given sc

45.
$$\vec{M} = \frac{-\vec{B}}{\mu_0} = x\vec{B}$$
, magnetization of an SC exposed to magnetic field,
 \vec{B}

Where,

$$x = -1/\mu_0$$
 , magnetic susceptibility

46.
$$E_g = 3.53 \ kT_c$$
, Energy gap of an SC representing the energy
required to break up one Cooper pair which is
proportional to the critical temperature at T=0K

Courtesy of Serway, Physics for Scientists and Engineers